首页> 外文OA文献 >Long-range transcriptional regulation of vertebrate developmental genes and the evolution of genome architecture
【2h】

Long-range transcriptional regulation of vertebrate developmental genes and the evolution of genome architecture

机译:脊椎动物发育基因的远程转录调控和基因组结构的进化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Despite the recent massive progress in production of vertebrate genome sequencedata and large-scale efforts to completely annotate the human genome, we still havescant knowledge of the principles that built genomes in evolution, of genomearchitecture and its functional organization. This work uses bioinformatics andzebrafish transgenesis to explain a mechanism for the maintenance of long-rangeconserved synteny across vertebrate genomes and to analyze the arrangement ofunderlying gene regulation systems. Large mammal-teleost conserved chromosomalsegments contain highly conserved non-coding elements (HCNEs), their target genes,as well as phylogenetically and functionally unrelated “bystander” genes. Targetgenes are developmental and transcriptional regulatory genes with complex,temporally and spatially regulated expression patterns. Bystander genes are notspecifically under the control of the regulatory elements that drive the target genesand are usually expressed in different, less complex, patterns. Enhancer detectionreporter insertions distal to zebrafish target genes recapitulate their expressionpatterns even if located inside or beyond bystander genes. We termed thesechromosomal segments genomic regulatory blocks (GRBs). To demonstrate, that theregulatory domain of a developmental regulatory gene can extend into and beyondadjacent bystander gene transcriptional units and that these elements indeed regulatetarget genes, we tested the function of HCNEs around genes encoding transcriptionfactors, PAX6, SOX3 and SOX11 in both human and zebrafish genomes. Comparingour results with those obtained using mouse, we establish that human elements can betested reliably in zebrafish. Testing the elements form SOX11 loci further revealedsubfunctionalization after genome duplication and functional turnover as evolutionaryprocesses on the gene regulation. The genome features confirmed by this work werealso applied to provide an advance in understanding human mutations causing orpredisposing towards genetic diseases. These mutations are frequently associated tothe incorrect gene(s) coding region instead of taking the regulatory mutation in distantregulatory elements of another possible causative gene into account. We coulddemonstrate using our approach that the genes linked to diabetes by genome wide association study contain in their introns HCNEs regulating different, more distantgene functionally more probably related to the diabetes phenotype.
机译:尽管最近在脊椎动物基因组序列数据的生产方面取得了巨大进展,并且为完全注释人类基因组做出了巨大努力,但我们仍然对在进化中建立基因组的原理,基因组架构及其功能组织的知识知之甚少。这项工作使用生物信息学和斑马鱼转基因来解释维持整个脊椎动物基因组的长期保守同义的机制,并分析基础基因调控系统的安排。大型哺乳动物保存的染色体片段包含高度保守的非编码元件(HCNE),它们的靶基因以及与系统发育和功能无关的“旁观者”基因。靶基因是具有复杂的,时间和空间调控的表达模式的发育和转录调控基因。旁观者基因不受驱动目标基因的调控元件的控制,通常以不同的,不太复杂的模式表达。即使位于旁观者基因内部或之外,斑马鱼靶基因远端的增强子检测报告子插入也可概括其表达模式。我们称这些染色体片段为基因组调控模块(GRB)。为了证明发育调节基因的调节域可以延伸到邻近旁观者基因转录单位内外,并且这些元件确实调节靶基因,我们测试了HCNE在编码人类和斑马鱼基因组中转录因子,PAX6,SOX3和SOX11的基因周围的功能。 。将结果与使用鼠标获得的结果进行比较,我们确定可以在斑马鱼中可靠地测试人的元素。测试SOX11基因座的元素进一步揭示了基因组复制和功能更新后的亚功能化,这是基因调控的进化过程。这项工作证实的基因组特征也被用于在理解引起或易患遗传性疾病的人类突变方面提供进展。这些突变通常与错误的基因编码区相关,而不是考虑另一个可能的致病基因的远距离调控元件中的调控突变。通过我们的方法,我们可以证明通过全基因组关联研究与糖尿病相关的基因在其内含子中包含HCNE,这些HCNE在功能上与糖尿病表型相关的功能不同,距离更远的基因更可能相关。

著录项

  • 作者

    Navrátilová, Pavla;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号